On the osculatory behaviour of higher dimensional projective varieties

نویسندگان

  • Edoardo Ballico
  • Claudio Fontanari
چکیده

Here we explore the geometry of the osculating spaces to projective varieties of arbitrary dimension. In particular, we classify varieties having very degenerate higher order osculating spaces and we determine mild conditions for the existence of inflectionary points. AMS Subject Classification: 14N05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic Mapping and Forward Kinematic Problem of a 5-DOF (3T2R) Parallel Mechanism with Identical Limb Structures

The main objective of this paper is to study the Euclidean displacement of a 5-DOF parallel mechanism performing three translation and two independent rotations with identical limb structures-recently revealed by performing the type synthesis-in a higher dimensional projective space, rather than relying on classical recipes, such as Cartesian coordinates and Euler angles. In this paper, Study's...

متن کامل

Splitting Criteria for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on a class of smooth complex projective varieties of dimension ≥ 4, over which every extension of line bundles splits.

متن کامل

A Splitting Criterion for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on arbitrary smooth complex projective varieties of dimension ≥ 4, which asserts that a vector bundle E on X splits iff its restriction E|Y to an ample smooth codimension 1 subvariety Y ⊂ X splits.

متن کامل

Geometrical Description of Smooth Projective Symmetric Varieties with Picard Number One

In [Ru2] we have classified the smooth projective symmetric G-varieties with Picard number one (and G semisimple). In this work we give a geometrical description of such varieties. In particular, we determine their group of automorphisms. When this group, Aut(X), acts non-transitively on X, we describe a G-equivariant embedding of the variety X in a homogeneous variety (with respect to a larger...

متن کامل

Smooth Projective Symmetric Varieties with Picard Number One

We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth. keywords:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004